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We present results for the momentum-resolved single-particle spectral function of the low-dimensional
system TiOCl in the insulating state, obtained by a combination of ab initio density functional theory and
variational cluster approach calculations. This approach allows to combine a realistic band structure and a
thorough treatment of the strong correlations. We show that it is important to include a realistic two-
dimensional band structure of TiOCl into the effective strongly correlated models in order to explain the
spectral-weight behavior seen in angle-resolved photoemission spectroscopy experiments. In particular, we
observe that the effect of the interchain couplings is a considerable redistribution of the spectral weight around
the � point from higher to lower binding energies as compared to a purely one-dimensional model treatment.
Hence, our results support a description of TiOCl as a two-dimensional compound with strong anisotropy and
also set a benchmark on the spectral features of correlated coupled-chain systems.
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I. INTRODUCTION

In recent years a significant amount of research has been
dedicated to strongly correlated materials with reduced di-
mensionality since they exhibit a large variety of fascinating
dimension-related properties. An example is the layered
quantum-spin system TiOCl, where bilayers of Ti-O are
separated by Cl− ions. This system was originally thought to
be a possible candidate for a resonating valence bond super-
conductor upon doping1 because of its frustrated triangular
lattice geometry. Later on, various experimental
measurements2–7 revealed that TiOCl shows in fact an
anomalous spin-Peierls behavior with two consecutive phase
transitions. Magnetic susceptibility was initially described in
terms of a one-dimensional spin-1/2 Heisenberg model with
a large intrachain coupling constant J�700 K.2,8 It is
though well known that susceptibility is not very sensitive to
different models and recent
ab initio density functional theory �DFT� studies9 showed
that the underlying interactions for this system can be under-
stood in terms of a spin-1/2 Heisenberg model with strong
intrachain antiferromagnetic interactions J1=660 K and
weaker interchain ferromagnetic interactions J2=−16 K, J3
=−10 K. This model reproduces the magnetic-susceptibility
measurements and sets a framework for understanding the
puzzling spin-Peierls phase transitions in this compound.
Only recently, research has also focused on high-pressure
studies10–13 as a possible way to drive the system metallic.

At room temperature and ambient pressure, the system is
a Mott insulator with a charge gap of about 2 eV.3,10 The
electronic structure in this high-temperature phase has been
examined by angle-resolved photoemission spectroscopy
�ARPES�.14,15 In agreement with previous experimental evi-
dence, the results show a strong anisotropy of the correlated
band structure, with significant dispersion of the Ti 3d bands

along the chains �crystallographic b direction�, and almost
flat bands perpendicular to the chains.

On the theoretical side, the electronic properties of TiOCl
have been studied by means of ab initio DFT calculations
within the local-density approximation �LDA�, the
LDA+U,2,16 B3LYP �Ref. 17� and also in combination with
the dynamical mean-field theory �DMFT�,18–20 which is a
modern method for dealing with strong correlations. It was
shown that a proper treatment of nonlocal correlations is cru-
cial for a reasonable description of the single-particle gap.20

However, the momentum dependence of the spectral func-
tion A�k ,�� seen in ARPES is still puzzling. It has been
shown that an ab initio calculation without proper treatment
of correlations is insufficient.2,15–17 On the other hand, de-
scribing the compound by a simplified one-dimensional
strongly correlated model was not successful either.14 Fur-
thermore, LDA+DMFT could so far only produce the mo-
mentum integrated local density of states �DOS� without any
information on the momentum dependence of the
spectra.18–20 This situation, having no calculation for the
momentum-resolved spectral function A�k ,�� at hand, is
partly due to the fact that there are only few methods that can
deal with all the requirements of such calculations. This
work is intended to fill this gap and investigates the influence
of the true two-dimensional band structure on the
momentum-resolved A�k ,�� in the presence of strong corre-
lations. A successful technique for this purpose is the varia-
tional cluster approach �VCA�.21,22

In what follows we apply a two-step procedure to study
the spectral function, as has been proposed by Chioncel et
al.23 First, DFT calculations within the LDA are carried out
and localized Wannier functions are constructed by the Nth
order muffin-tin-orbital �NMTO� �Ref. 24� downfolding
technique. Using the LDA Hamiltonian expressed in these
Wannier functions as the noninteracting part, and adding

PHYSICAL REVIEW B 80, 115129 �2009�

1098-0121/2009/80�11�/115129�9� ©2009 The American Physical Society115129-1

http://dx.doi.org/10.1103/PhysRevB.80.115129


Coulomb and Hund interaction terms, we arrive at the corre-
lated low-energy model. By applying VCA to this model
Hamiltonian, we show that the inclusion of the interchain
processes leads to a significant redistribution of spectral
weight from higher to lower binding energies. Since these
processes enhance the asymmetry of the strongly correlated
band structure, they are crucial for the reproduction of the
asymmetric bands seen in ARPES measurements. Our calcu-
lations show that the Hubbard-model description is appropri-
ate for TiOCl if effects beyond the one-dimensional descrip-
tion are included. Moreover these results should be valid for
a large variety of correlated low-dimensional coupled-chain
systems.

The paper is organized as follows: in Sec. II we discuss
the construction of the low-energy Hamiltonian, as well as
the VCA, which is subsequently used for the calculation of
the correlated spectral function. Section III contains our re-
sults of the multiband as well as of the single-band Hubbard
model and in Sec. IV we present our discussions and conclu-
sions.

II. THEORY

In many transition-metal oxides electronic correlation ef-
fects are very important for a proper description of the physi-
cal properties. However, it is a known fact that first-principle
calculations suffer from an insufficient treatment of these
effects. In order to take the strong correlations into account
in our calculation for TiOCl, we apply a two-step procedure
�LDA+VCA� that has first been introduced by Chioncel et
al.23 It consists of the construction of the correlated low-
energy Hamiltonian based on density functional theory on
the one hand and the solution of the resulting low-energy
Hamiltonian using the VCA on the other hand. In Ref. 23,
the authors study the nonquasiparticle states in the half-
metallic compound CrO2 and find good agreement with ex-
periments. Moreover, a comparison with LDA+DMFT cal-
culations showed the applicability of the LDA+VCA
approach. Recently, it has also been used to explain the
pseudogap in TiN, where also the momentum-resolved spec-
tral function has been calculated.25

A. Low-energy Hamiltonian

For a complete description of the electronic structure of a
given material it is, in principle, necessary to consider all
electronic degrees of freedom of the underlying constituents.
Calculations within DFT can to some extent fulfill this re-
quirement. However, it is clear that only certain states and
orbitals contribute to the low-energy physics. For this reason
one is interested in finding an effective model that describes
the low-energy physics on the one hand sufficiently accurate
and has, on the other hand, not too many degrees of freedom.

In the present case of TiOCl, DFT calculations within the
LDA approximation have shown that the relevant orbitals at
low energies are the Ti 3d orbitals, which are split into t2g
and eg manifolds due to the octahedral crystal field provided
by the ligands. Since the Ti3+ ion is in a 3d1 configuration,
the relevant states closest to the Fermi energy are of pre-
dominantly t2g character.

For the construction of the low-energy Hamiltonian, we
performed DFT calculations within the LDA using the lin-
earized MTO basis set. The localized orbitals, which are the
basis of the interacting model, are constructed using the
NMTO method. By using the downfolding technique,24 the
hybridization of the Ti t2g orbitals with the ligand orbitals
�O p and Cl p� are taken into account, yielding an effective
set of t2g orbitals. These orbitals represent the LDA band
structure with great accuracy and are used as the noninter-
acting part of the many-body Hamiltonian. The matrix ele-
ments of the NMTO Hamiltonian HLDA�k� in the basis set of
localized NMTO Wannier functions give the transfer inte-
grals tij

�� and the noninteracting Hamiltonian can be written
as

H0
LDA = �

ij,�
�
��

tij
��ci�,�

† cj�,�. �1�

The indices label the lattice sites by i, j, as well as the t2g
orbitals by �, �, and � denotes the spin.

To include correlation effects into the low-energy descrip-
tion, we add interaction terms to the Hamiltonian,

H = H0
LDA − ��

i�

ni� +
U

2 �
i��

ni��ni��̄ +
U�

2 �
i,���

ni�ni�

− Jz �
i,���

Si�
z Si�

z −
J

2 �
i,���

�Si�
+ Si�

− + Si�
− Si�

+ � . �2�

For convenience, we introduced the chemical potential � in
the Hamiltonian. We will refer to this Hamiltonian as t2g
model and give all energies throughout the paper in units
of electron volt �eV�. The full low-energy model Eq. �2�
consists of the single-particle terms �H0 and ��, the diagonal
�density-density� interactions �U, U�, and Jz�, and the nondi-
agonal �spin-flip� term �J, third line�. In this study we con-
sider only the case Jz=J. ni�=ni�↑+ni�↓ is the orbital occu-
pation operator and Si�

z , Si�
+ , and Si�

− are the components
of the spin-1

2 operator on site i in orbital �. The interaction
parameters U, U�, and J are not independent but fulfill
the relation U�=U−2J. At this point it is important to note
that we can include a full SU�2� symmetric exchange term.
Since the method we consider is not affected by any sign
problem, it has no restriction on the type of couplings
that can be included.26 For the interaction parameters U
and J one can find several values in the literature,
ranging from U=3.0 eV to U=4.0 eV and J=0.5 eV to J
=1.0 eV.2,14,16,18,20 Since we want to study also the influence
of these parameters on the single-particle properties, we have
performed calculations with different values, and indicate the
actual value at the corresponding location in the paper.

In this work, we also address the question whether the
orbital degrees of freedom are important for the low-energy
physics or not. Since TiOCl does not crystallize in a perfect
cubic symmetry, the threefold degeneracy of the t2g manifold
is lifted. LDA+U �Refs. 2 and 16� and also LDA+DMFT
�Ref. 18� calculations have shown that the ground state
shows predominantly dxy character �the local reference frame
is ẑ=a, and x̂ and ŷ axes rotated by 45° with respect to b and
c�, with only very small admixture of the other orbital de-
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grees of freedom, a picture that we will also find in our
following calculations. This is in contrast to DMFT calcula-
tions based on iterative perturbation theory,19 where a sizable
admixture of the other orbital degrees of freedom is found.

In order to investigate the effective one-band model that
consists of the dxy orbital only, we performed a NMTO
downfolding procedure integrating out all other degrees of
freedom, and keeping only the dxy channel. In this one-band
model, the only interaction terms are the ones proportional to
the Hubbard onsite U, and the low-energy one-band Hamil-
tonian finally reads

H = �
ij,�

tijci�
† cj� + U�

i

ni↑ni↓ − ��
i

ni, �3�

where the Hubbard interaction U is the same as for the t2g
model. The effective hopping parameters tij are again the
matrix elements of HLDA�k� in the Wannier basis set.

B. Variational cluster approach

After having constructed the low-energy Hamiltonian us-
ing ab initio techniques, we use the VCA �Refs. 21 and 22�
in order to calculate the spectral function of this model.
Since we deal with an effective low-energy Hamiltonian that
involves no other uncorrelated ligand states �O p, Cl p�, but
only the correlated Ti t2g orbitals, the application of VCA is
straightforward, and is from a technical point of view exactly
equivalent to standard multiorbital calculations for Hubbard-
model Hamiltonians. The only difference is that the nonin-
teracting part is determined by the procedure discussed in
Sec. II A. Furthermore, since there are no explicit ligand
states in the Hamiltonian, there is no need for a double-
counting correction. It gives just a constant shift in energy
which can be absorbed in the chemical potential.

As mentioned in Sec. I, the VCA is a quantum cluster
method capable of treating strong short-ranged correlations.
The main idea is to approximate the self-energy of the origi-
nal model, which is defined on an infinite lattice, by the
self-energy of a finite cluster, the reference system. The
variational principle states that the optimal solution is given
by the stationary points of the grand potential ��	� as a
function of the self-energy 	. Parametrizing the self-energy
by the single-particle parameters t� of the reference system,
we can write the grand potential as

��t�� = �� + Tr ln�G0,t
−1 − ��t���−1 − Tr ln Gt�, �4�

where �� and Gt� are, respectively, the grand canonical po-
tential and the Green’s function of the reference system and
G0,t is the noninteracting Green’s function of the physical
�lattice� system. The stationary condition reads

� ��

�t�
�

t�=topt�
= 0. �5�

It is important to note that the interaction parameters are
not variational parameters since, by construction of the VCA,
the interaction terms of the reference system and the original
lattice model must not differ. In this study, we restrict our-
selves to local interactions only since the VCA in its strict
sense cannot be used for models with nonlocal interactions

without further approximations. In its spirit, the VCA is
closely related to the DMFT, where in the latter case the
self-energy is obtained from an impurity problem.

The actual VCA calculation is done in the following steps.
First, we determine the ground state of the reference system,
i.e., a cluster of finite size as depicted in Fig. 1. The inter-
acting Green’s function is calculated, and since the noninter-
acting Green’s function of the reference system is known, the
self-energy can readily be obtained using Dyson’s equation.
Using the grand potential �� of the reference system, the
Green’s function Gt�, and the self-energy ���t���, Eq. �4� is
evaluated using the technique of Q matrices.27 Note that the
Green’s functions G0,t, Gt�, and the self-energy ��t�� in Eq.
�4� are matrices not only in site and spin indices but also
carry an orbital index. In fact, this is the only difference of
the application of VCA in the present case compared to the
numerous previous applications to the single-band Hubbard
model.

As a reference system solver, we use the Band-Lanczos
exact diagonalization technique at zero temperature, which
means that for the full t2g manifold, we can easily consider
clusters with at most four sites, yielding a 12-orbital Green’s
function Gt�. For the single-band model, we consider clusters
up to 12 sites. We exploit particle number and spin conser-
vation, therefore the sizes of the largest Hilbert spaces that
we have to consider are N=14 520 states in the four-site
multiorbital case, and N=853 776 states in the 12-site single-
orbital case, respectively. Since we are considering an exact
diagonalization method for solving the cluster problem, all
interactions in Hamiltonians �2� and �3� are treated exactly
and on the same footing. This is a clear advantage compared
to, e.g., using the Hirsch-Fye quantum Monte Carlo method
as impurity solver since in the latter case approximations to
the interaction terms of the Hamiltonian have to be done.26

The VCA approach has been tested thoroughly and used
successfully for many investigations in recent years. Several
studies on the cuprate-based high-temperature superconduct-
ors have shown that this approach can reproduce salient fea-
tures of these materials, such as the ground-state phase
diagram,27–30 or the opening of the pseudogap at low hole

t1

t2 t1

t2

−axisa

−
ax

is
b

3t

i) ii)

FIG. 1. Triangular lattice structure and two possible clusters
tiling the lattice. �i� Four-site cluster including interchain self-
energies. �ii� 1D clusters neglecting interchain self-energies. Full
circles and solid lines mark sites and bonds inside a clusters. Next-
next-nearest neighbor hopping t3 is only drawn once for clarity. In
the case of the t2g manifold each lattice site consists of three
orbitals.
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doping, accompanied with the occurrence of Fermi arcs,30,31

in very good agreement with experiments and results ob-
tained by the cellular DMFT �see, e.g., Ref. 32�. Recently,
the VCA could also reproduce the pairing symmetry of the
iron-based superconductors.33

The VCA has also been used for multiorbital systems,
which is relevant for the combination with ab initio methods.
On the pure methodological level, the metal-insulator transi-
tion in infinite dimensions was studied34,35 and very good
agreement with dynamical mean-field calculations was
found. An application to real materials was done in Refs. 36
and 37, where the compounds NiO, CoO, and MnO have
been studied and very good agreement with experimental
photoemission data has been found. Details on the practical
implementation of the VCA, including tests and benchmark-
ing, can be found in Refs. 21, 27, and 38–41.

In general, all the single-particle parameters t� are varia-
tional parameters of the VCA. In practice, one chooses a
physically motivated subset in order to keep the numerical
calculations feasible. Here we make the following choice.
For a thermodynamically consistent description of the densi-
ties, it is crucial to consider the onsite energies, i.e., the local
terms of the single-particle Hamiltonian 
�� ��tii

����, as varia-
tional parameters.30 We define the average 
�= 1

2 �
xy� +
yz� �
and the crystal-field splitting �cf� =
yz� −
xy� , which are then
used as the variational parameters of the VCA. Note that in
the single-band case, Eq. �3�, one has to deal with 
� only.
One has to be aware that the variational parameter �cf� does
not impose an artificial orbital polarization of the system
since it is a parameter in the variational procedure and no
physical external field. Hence, using 
� and �cf� , the orbital
occupancies are determined in a fully self-consistent way.

The main property investigated in this work is the single-
particle spectral function which we define as

A�k,�� = −
1

�
tr Im G�k,�� . �6�

Since we broke the translational invariance of the system by
introducing the cluster tiling, a proper periodization of the
lattice quantities is needed in order to restore translational
symmetry, an issue also important in cluster DMFT
calculations.42 Here, we choose to use the periodization of
the Green’s function since the periodization of the self-
energy gives unphysical results in the insulating phase.41 In
other words, starting from the Green’s function that depends
on two momenta, G�k ,k� ,��, one restores the fully transla-
tionally invariant Green’s function G�k ,��, by neglecting
the off-diagonal elements, and taking k=k� only. It has been
shown that this is a well-justified approximation to calculat-
ing the momentum-dependent spectral function.43 The
Green’s function G is in general a matrix in orbital indices
and A�k ,�� is given by the trace over the orbital degrees of
freedom.

III. RESULTS

A. Full t2g model vs effective one-band model

Before we come to a detailed analysis of the single-band
model, we first want to check the validity of the restriction to

the lowest d orbital. For this reason, we performed ab initio
calculations to determine the full single-particle Hamiltonian
of the system. Since Ti3+ is in a 3d1 configuration, the eg
orbitals are unoccupied and can be projected out, and the full
kinetic Hamiltonian is downfolded to the threefold degener-
ate t2g manifold. Results show, that the system exhibits a
strong anisotropy, with the largest hopping integrals in the
crystallographic b direction, see Fig. 1, almost one order of
magnitude larger than the other transfer integrals. Moreover,
the threefold degeneracy is lifted and the manifold split into
the lower dxy and the higher dxz and dyz orbitals. Note that for
the orbital designation we consider the same local reference
frame as in Refs. 14 and 18. The crystal-field splitting be-
tween the ground state and the first excited state obtained
from LDA is about 0.42 eV. This theoretical value is in rea-
sonable agreement with experimental results.3,44 Despite this
splitting, the orbital sector is not fully polarized in the LDA
calculations, and the occupation of dxy is about 0.49, with
0.51 electrons in the other two orbitals.

In order to perform our LDA+VCA calculations, we take
the downfolded Hamiltonian of the ab initio calculations,
and add the interaction and exchange terms according to Eq.
�2�. In the upper panel of Fig. 2 we show the results for the
spectral function, Eq. �6�, calculated for this three-band t2g
model using typical parameters U=3.3 eV and J=0.5 eV.
The bands which are located just above the Fermi level, be-
tween roughly 0.5 and 2.0 eV, have dxz and dyz character, and
remain almost unchanged by the strong interactions.

The behavior of the dxy orbital is strikingly different. It
splits into two bands that can be identified with the lower and
upper Hubbard band, located roughly around −1.0 and 2.5
eV, respectively. By inspecting the terms of the Hamiltonian
related to the crystal-field splitting, i.e., Hcf=�cf�i�nyz+nzx
−nxy�, we can calculate the orbital polarization p=�� /��cf.

(π,0)

(0,0)

(0,π)

-2 -1 0 1 2 3 4
ω − µ [eV]

(π,0)

(0,0)

(0,π)

multi-orbital

single-orbital

FIG. 2. Comparison of the single-particle spectral function of
the t2g model �top� and the single-band model �bottom�, both cal-
culated with a 2
2 reference system, see Fig. 1�i�. Parameters are
U=3.3 eV and J=0.5 eV. For the hopping parameters see text.
The chemical potential has been chosen such that �i� the system is
insulating with n=1.0 and �ii� the position of the occupied states
coincide in both calculations. Lorentzian broadening of �
=0.02 eV was used.
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We find a value of p=−0.99, meaning that the system is
almost perfectly polarized into the dxy orbital, which is in
agreement with recent LDA+CDMFT calculations.20 Inter-
estingly, this polarization is found without any sizable in-
crease in the crystal-field splitting in the variational proce-
dure, i.e., �cf��cf� , but it is only due to the inclusion of
strong local interactions.

This result gives rise to the question, to which extent a
single-band Hubbard model can describe the occupied states
relevant for comparison with ARPES. We took parameters
from a full downfolding to the Ti dxy orbital only, cf. first
column of Table I in Ref. 16. Using the same value of U
=3.3 eV we calculate the spectral function for Hamiltonian
�3�. The results are shown in the lower panel of Fig. 2. In
order to avoid effects coming from different cluster sizes, we
used also a 2
2 cluster for this comparison. Note that below
the Fermi level the agreement between the single-band
model and the dxy part of the t2g model is excellent. For this
reason we conclude that for a comparison of spectra with
experimental ARPES measurements Hamiltonian �3� is a rea-
sonable starting point.

Before turning to a more detailed analysis of the spectra
obtained from Eq. �3�, let us briefly discuss the single-
particle gap �, defined as the energy difference between the
lowest-unoccupied and the highest-occupied state. For a
comparison of this quantity with experiments, it is clear that
the single-band model is not sufficient, since it does not de-
scribe the excited states in the t2g manifold. However, we
extracted the gap � from the spectral function of the t2g
model for different values of U and J. We find that the main
quantity that determines the gap is the interorbital Coulomb
interaction U�=U−2J, and we get ��1.2 eV for U
=3.3 eV, J=0.5 eV. In Fig. 3 we plot the spectral function
for different sets of interaction parameters, and find �
�1.4 eV for U=4 eV, J=0.7 eV, and ��1.9 eV for U
=4 eV, J=0.5 eV. All these values for the gap are a bit
smaller than the experimental charge gap of about 2 eV,3 but
nevertheless in reasonable agreement.

B. Spectral weights in the single-band Hubbard model

We have shown in Sec. III A that the occupied states of
the t2g manifold are well reproduced by a single-band Hub-
bard model. In this section we want to investigate the spec-
tral function of Eq. �3� in more detail. As mentioned above,
we focus on the effect of the additional two-dimensional
hopping processes on the quasi-one-dimensional behavior of
TiOCl.

First, we want to determine the strength of the correla-
tions along the qualitatively different bonds of the lattice,
Fig. 1. This can be done best by inspecting the self-energy
	ij���, which is, in VCA, a quantity defined on the reference
system and, thus, can be readily obtained. The results for
three selected matrix elements are shown in Fig. 4, calcu-
lated on an 2
4 cluster. This cluster consists of two coupled
four-site chains in b direction. In other words, a cluster simi-
lar to the one depicted in Fig. 1�i� but with doubled extension
in b direction. It is obvious that local �	11���� and intrachain
correlations �	13���� are strong but the correlations between
adjacent chains �	12���� are orders of magnitude weaker. In
addition, we show in the right panel of Fig. 4 the Fourier
transformation of the self-energy for momenta accessible at
this small cluster. Again, the influence of momenta perpen-
dicular to the chains is hardly visible in the self-energy,
whereas it shows significant momentum dependence in the
chain direction. This leads to the conclusion that the spectra
of TiOCl should be governed by one-dimensional �1D� cor-
relations modified by single-particle effects due to the cou-
pling of the chains.

Motivated by this result, we use from now on a 1
12
cluster as reference system. Since the VCA approximates the
interacting Green’s function as G���−1=G0,t

−1 −���� with

(π,0)

(0,0)

(0,π)

-2 -1 0 1 2 3 4
ω − µ [eV]

(π,0)

(0,0)

(0,π)

U = 4 eV, J = 0.7 eV

U = 4 eV, J = 0.5 eV

FIG. 3. �Color online� Comparison of the spectral function of
the t2g model for two different sets of interaction parameters. Top:
U=4.0 eV and J=0.7 eV. Bottom: U=4.0 eV and J=0.5 eV. The
vertical dashed lines mark the edges of the single-particle gap.
Lorentzian broadening of �=0.02 eV was used.

-2 -1.5 -1 -0.5 0 0.5 1 1.5
ω − µ [eV]

-40

-30

-20

-10

0
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20

30
Im Σ

11
(local)

Im Σ
12

(interchain)

Im Σ
13

(intrachain)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
ω − µ [eV]

-150

-100

-50

0

50

100

150

Im Σ(k,ω)

k = (π,0)

k = (0,0)

k = (0,π/2)

k = (0,π)

Im Σ
ij
(ω)

FIG. 4. �Color online� Imaginary part of the self-energies on a
reference system consisting of two coupled four-site chains. Left
panel: real space 	ij���. Solid line: local/onsite self-energy 	11���.
Dashed line: interchain self-energy 	12���. Dash-dotted line: intra-
chain self-energy 	13���. Right panel: self-energy for selected mo-
menta of the cluster. Momenta are indicated in the plot and a ver-
tical shift between momenta has been introduced for improved
presentation. The self-energy shows causality �negative definite�,
almost no dependence in a direction, and strong dependence in b
direction. Lorentzian broadening of �=0.02 eV was used in both
plots.

MOMENTUM-RESOLVED SINGLE-PARTICLE SPECTRAL… PHYSICAL REVIEW B 80, 115129 �2009�

115129-5



G0,t the noninteracting Green’s function of the model Hamil-
tonian and ���� the cluster self-energy, it is easy to see that
the intercluster coupling is treated in a single-particle �i.e.,
noninteracting� manner, since it enters just via G0,t. On the
other hand, this procedure gives the best possible description
of the correlation effects along the chains in b direction.

In Fig. 5 we show a density plot of the spectral function
of Hamiltonian �3� for U=3.3 eV. In the upper part we in-
cluded only the intrachain hopping t1=−0.21 eV in the cal-
culation, leading to flat bands in a direction, i.e., from �� ,0�
to �0,0�, since in this case the chains are decoupled. By in-
cluding additional interchain parameters t2=0.03 eV and t3
=0.04 eV as given in Ref. 16, we notice a slight dispersion
in a direction. In b direction, however, the band positions
remain almost unchanged; we find only changes in the spec-
tral weights. Since this cannot be seen clearly in the density
plots, we show in Fig. 6 the evolution of the spectral function
at the � point k= �0,0� when longer-ranged hopping pro-
cesses are included.

The upper left panel �a� is the spectral function for decou-
pled chains with the spin-charge separation clearly visible.
At the � point the holon band is located around −1.72 eV
and the spinon band around −1.39 eV. Including the nearest-
neighbor interchain hopping t2 leads to a significant redistri-
bution of spectral weight from the holon to the spinon band,
i.e., from higher to lower binding energies, see the upper
right panel �b�. This effect is even enhanced when the next-
nearest interchain hopping t3 is included, as shown in the
lower right panel �d�. Here the spectral weight of the low
binding energy �“spinon”� excitation is comparable to the
weight of the high binding energy �“holon”� excitation for
decoupled chains in panel �a� and vice verse. At this point we
would like to mention, that in a strict sense the terminology

spinon and holon is not applicable any more, since these are
properties of purely one-dimensional systems. Anyway, since
the spectra resemble to some extent 1D systems, we still use
these terms to distinguish the different excitations.

From Fig. 6 it is clear that the inclusion of interchain
processes enhances the asymmetry of the k-resolved spectra.
The low-lying excitation near the � point is strongly en-
hanced, whereas there is no spectral weight transfer to lower
binding energies visible around �0,��. Note that we define
the spectrum to be symmetric if the main excitations at k
vector �0,0� and �0,�� are located at the same binding
energy.

One may ask if it is possible to get a similar spectral-
weight distribution by using only the purely one-dimensional
Hubbard model but including longer-ranged intrachain hop-
ping processes as given by the ab initio calculations. In fact,
the next-nearest-neighbor hopping term along the chain, t4,
is of similar size of the interchain hoppings.16 The result for
the spectral function at the � point in this pure 1D case is
shown in the lower left panel �c� of Fig. 6. From this result it
is obvious that one cannot get an excitation at binding ener-
gies of roughly −1.4 eV, as seen in experiments. On the
contrary, the spectral weight of the excitation at the higher
binding energy of about −1.8 eV is even enhanced in the
one-dimensional treatment when longer-ranged hopping
processes are included.

Our results support the description of TiOCl as a layered
two-dimensional compound with strong anisotropy also on
the level of correlations. There is finite dispersion also per-
pendicular to the chains, but a backfolding of the bands can
only be seen along the chains, where correlations are
dominant.

Let us now comment on the relation of our results
to ARPES data. Experiments show14 that the dispersion in
TiOCl shows a strong asymmetric behavior along the
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crystallographic b direction, see also the right plot of Fig. 7.
The binding energy of the lowest-lying band around k
= �0,0� is about −1.5 eV, whereas around k= �0,�� it is
about −2.0 eV. First attempts to describe the dispersions
within ab initio calculations were not successful. Standard
LDA calculations do not produce the backfolding of the
bands induced by short-range spin fluctuations and spin-
polarized LSDA+U calculations cannot account for the
asymmetry of the spectra. Also the spectra of the one-
dimensional Hubbard model calculated within the dynamical
density-matrix renormalization group do not reproduce the
experimental spectral-weight distribution.14 However, as can
be seen in Fig. 7, our results show that the Hubbard model
can indeed give a good description of the asymmetry, since
the interchain processes give rise to a spectral weight transfer
from the holon to the spinon band around the � point, and
therefore make the band structure more asymmetric.

In order to compare our results more quantitatively, we
extract the following numbers related to the bandwidths of
the spectra. The first one, wb, is the difference of the binding
energies at �0,� /2� and �0,�� and is a measure for the over-
all band width. The second one, wb�, is defined to be the
difference in binding energies between �0,� /2� and �0,0�.
The larger the difference between these two quantities, the
larger is the asymmetry of the spectra. From experiments15

we extract wb�0.47 eV and wb��0.17 eV, and for the cal-
culated spectra we get wb�0.50 eV and wb��0.09 eV.
Comparing theory and experiment, we see that the overall
bandwidth wb is well reproduced by the calculation, but the
asymmetry is even a bit more pronounced in the theoretical
spectra, resulting in a smaller value of wb�. This result may be
improved by including more longer-ranged hopping pro-
cesses. Although they decrease rapidly with distance, they
can change the bandwidths within a few percent.

By inspecting Fig. 7 it is obvious that the width of the
spectra is much larger in the ARPES data than in the calcu-
lated spectra. The most important reason for that is that our
calculations are done at T=0, using exact diagonalization

techniques. Therefore there are no lifetime effects due to
finite temperatures included in our calculations. Moreover,
additional coupling to lattice degrees of freedom could also
lead to a smaller lifetime and hence broader excitations.

In summary, our results imply that it is important to in-
clude the interchain couplings at least on a single-particle
noninteracting level into the effective model, in order to im-
prove the description of the experimental spectra, although
the strong correlations are constricted mainly to the chains.

With our work we could fill the gap left by previous the-
oretical studies regarding the momentum-resolved single-
particle spectral function of TiOCl. There are, though, still
some open questions. For example, we do see clear signa-
tures of spin-charge separation in our calculated spectra,
which have not been found experimentally. Also the so-
called shadow band, dispersing at around −2 eV has not
been seen in the ARPES spectra. A reason for this can be a
very small relative spectral weight of the high-energy band
that cannot be resolved in experiment. In our calculation we
also did not include the lattice degrees of freedom, which are
supposed to be very important in TiOCl,17 driving the spin-
Peierls phase transition. These phonons can also lead to a
smearing of the peak structure of A�k ,��.

Finally, we want to comment also on the differences be-
tween the ARPES spectra of TiOCl and TiOBr. Experiments,
supplemented with band structure calculations, have
shown15,45 that in the latter compound the intrachain cou-
plings are weaker and the interchain couplings stronger com-
pared to TiOCl,45 e.g., t1 decreases from −0.21 to −0.17 eV,
whereas t3 increases from 0.04 to 0.06 eV. By inspecting the
self-energies in a similar manner as we did in Fig. 4, we
found that also for these parameter values the correlations
are predominantly one dimensional. There are only changes
in the overall bandwidths but no qualitative changes. For
instance, the bandwidth in a direction is enhanced but there
are no signatures of strong interchain correlations resulting
in a backfolding of the bands.

At this point we want to remark that, in particular, for
TiOBr, one should be very careful with the use of the spinon/
holon terminology. Although there are no qualitative changes
due to the enhanced couplings, they do change the band-
widths. Hence, quantitative analysis have to be done includ-
ing these interchain couplings.

IV. CONCLUSIONS

By combining ab initio calculations �LDA� and the varia-
tional cluster approximation, we could study the momentum-
resolved spectral function including a realistic band structure
and strong-correlation effects. In agreement with previous
theoretical studies and experimental results, our calculations
showed an almost complete polarization in the orbital sector,
with 99% of the electrons occupying the Ti dxy orbital.

Since the orbital degree of freedom is quenched, we could
use an effective single-band model for the investigation of
the spectral properties. The most striking result of our study
is that the inclusion of interchain hopping processes leads to
a significant spectral weight redistribution around the � point
from higher to lower binding energies. This effect, which
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makes the spectrum more asymmetric with respect to the
points �0,0� and �0,��, cannot be reproduced using only the
hopping processes along the chains. This result suggests that
the frustrated interchain coupling9 is one of the main reasons
for the strong asymmetry that has been found in experimen-
tal ARPES measurements. Moreover the calculated spectral
features may be extended to a more general class of corre-
lated coupled-chains systems.

An open question in TiOCl is still the role of phonons.
Because of the vicinity of the system to a spin-Peierls insta-
bility, the phonons are supposed to be important in the sys-
tem. Including these degrees of freedom, although theoreti-

cally very demanding, could further improve the results with
respect to line shapes and lifetimes of the excitations.
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